(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

*(x, *(y, z)) → *(otimes(x, y), z)
*(1, y) → y
*(+(x, y), z) → oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) → oplus(*(x, y), *(x, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, *(z1, z2)) → *(otimes(z0, z1), z2)
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
S tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
K tuples:none
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c, c2, c3

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
We considered the (Usable) Rules:none
And the Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [1] + [2]x1 + [2]x2 + [2]x1·x2   
POL(*'(x1, x2)) = [2] + [3]x1 + [2]x2 + x1·x2   
POL(+(x1, x2)) = [3] + x1 + x2   
POL(c(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   
POL(oplus(x1, x2)) = [3] + x1 + x2   
POL(otimes(x1, x2)) = x1 + x2   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, *(z1, z2)) → *(otimes(z0, z1), z2)
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
S tuples:

*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
K tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c, c2, c3

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [3] + [3]x1 + [2]x2 + [3]x1·x2   
POL(*'(x1, x2)) = [3]x2 + [3]x1·x2   
POL(+(x1, x2)) = [2] + x1 + x2   
POL(c(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   
POL(oplus(x1, x2)) = [3] + x1 + x2   
POL(otimes(x1, x2)) = x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, *(z1, z2)) → *(otimes(z0, z1), z2)
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
S tuples:

*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
K tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c, c2, c3

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [3] + [2]x1 + [2]x2 + [2]x1·x2   
POL(*'(x1, x2)) = [3] + [2]x1 + [2]x2 + x1·x2   
POL(+(x1, x2)) = [2] + x1 + x2   
POL(c(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   
POL(oplus(x1, x2)) = [3] + x1 + x2   
POL(otimes(x1, x2)) = x1 + x2   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, *(z1, z2)) → *(otimes(z0, z1), z2)
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
Tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
S tuples:none
K tuples:

*'(z0, *(z1, z2)) → c(*'(otimes(z0, z1), z2))
*'(z0, oplus(z1, z2)) → c3(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
Defined Rule Symbols:

*

Defined Pair Symbols:

*'

Compound Symbols:

c, c2, c3

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))